Search results for "Finite automaton"
showing 10 items of 71 documents
Biomolecular computers with multiple restriction enzymes
2017
Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…
Arithmetical Analysis of Biomolecular Finite Automaton
2013
In the paper we present a theoretical analysis of extension of the finite automaton built on DNA (introduced by the Shapiro team) to an arbitrary number of states and symbols. In the implementation we use a new idea of several restriction enzymes instead of one. We give arithmetical conditions for the existence of such extensions in terms of ingredients used in the implementation.
Some considerations on Hydra groups and a new bound for the length of words
2014
Abstract After a survey on some recent results of Riley and others on Ackermann functions and Hydra groups, we make an analogy between DNA sequences, whose growth is the same of that of Hydra groups, and a musical piece, written with the same algorithmic criterion. This is mainly an aesthetic observation, which emphasizes the importance of the combinatorics of words in two different contexts. A result of specific mathematical interest is placed at the end, where we sharpen some previous bounds on deterministic finite automata in which there are languages with hairpins.
Multi-letter reversible and quantum finite automata
2007
The regular language (a+b)*a (the words in alphabet {a, b} having a as the last letter) is at the moment a classical example of a language not recognizable by a one-way quantum finite automaton (QFA). Up to now, there have been introduced many different models of QFAs, with increasing capabilities, but none of them can cope with this language. We introduce a new, quite simple modification of the QFA model (actually even a deterministic reversible FA model) which is able to recognize this language. We also completely characterise the set of languages recognizable by the new model FAs, by finding a "forbidden construction" whose presence or absence in the minimal deterministic (not necessaril…
Hamming, Permutations and Automata
2007
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than superexponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We prove that there is an infinite sequence of distinct int…
Super-Exponential Size Advantage of Quantum Finite Automata with Mixed States
2008
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than super-exponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We use a novel proof technique based on Kolmogorov complex…
Running time to recognize nonregular languages by 2-way probabilistic automata
1991
R. Freivalds proved that the language {0m1m} can be recognized by 2-way probabilistic finite automata (2pfa) with arbitrarily high probability 1-ɛ. A.G.Greenberg and A.Weiss proved that no 2pfa can recognize this language in expected time \(T(n) = c^\circ{(n)}\). For arbitrary languages C.Dwork and L.Stockmeyer showed somewhat less: if a language L is recognized by a 2pfa in expected time \(T(n) = c^{n^\circ{(1)} }\), then L is regular. First, we improve this theorem replacing the expected time by the time with probability 1-ɛ. On the other hand, time bound by C.Dwork and L.Stockmeyer cannot be improved: for arbitrary k≥2 we exhibit a specific nonregular language that can be recognized by 2…
Weak and strong recognition by 2-way randomized automata
1997
Languages weakly recognized by a Monte Carlo 2-way finite automaton with n states are proved to be strongly recognized by a Monte Carlo 2-way finite automaton with no(n) states. This improves dramatically over the previously known result by M.Karpinski and R.Verbeek [10] which is also nontrivial since these languages can be nonregular [5]. For tally languages the increase in the number of states is proved to be only polynomial, and these languages are regular.
Block-Deterministic Regular Languages
2001
We introduce the notions of blocked, block-marked and blockdeterministic regular expressions. We characterize block-deterministic regular expressions with deterministic Glushkov block automata. The results can be viewed as a generalization of the characterization of one-unambiguous regular expressions with deterministic Glushkov automata. In addition, when a language L has a block-deterministic expression E, we can construct a deterministic finite-state automaton for L that has size linear in the size of E.
Algorithmic Information Theory and Computational Complexity
2013
We present examples where theorems on complexity of computation are proved using methods in algorithmic information theory. The first example is a non-effective construction of a language for which the size of any deterministic finite automaton exceeds the size of a probabilistic finite automaton with a bounded error exponentially. The second example refers to frequency computation. Frequency computation was introduced by Rose and McNaughton in early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung, Hinrichs and others. A transducer is a finite-state automaton with an input and an output. We consider the possibilities of probabilistic and frequency transducers and prove sever…